Riemann Sums and definite integrals

(1). Riemann Sums For a function f defined on $[a, b]$, a partition P of $[a, b]$ into a collection of subintervals

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \cdots,\left[x_{n-1}, x_{n}\right],
$$

and for each $i=1,2, \cdots, n$, a point x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$, the sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

is called a Riemann sum for f determine by the partition P. Let $|P|=\max \left\{x_{i}-x_{i-1}\right.$ for all $i=1,2, \cdots, n\}$ denote the longest length of all the subintervals.
(2). The Definite Integral The definite integral of f from a to b is the number

$$
\int_{a}^{b} f(x) d x=\lim _{|P| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

provided the limit exists. (We in this case say f is integrable on $[a, b]$).
(3). Computing Riemann Sums For a continuous function f on $[a, b], \int_{a}^{b} f(x) d x$ always exists and can be computed by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

for any choice of the x_{i}^{*} in $\left[x_{[} i-1, x_{i}\right]$ with $\delta x=\frac{b-a}{n}$ and $x_{i} a+i \Delta x$. That is, P partitions $[a, b]$ into equal length subintervals (called a regular partition.

Example 1 Compute the Riemann sum $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ for the function $f(x)=\frac{1}{x}$ on $[1,6]$ with a regular partition into $n=5$ subintervals, and with $x_{i}^{*}=x_{i}$.

Solution: Note that $a=1, b=6$ and $n=5$. Compute the following

$$
\begin{aligned}
\Delta x & =\frac{b-a}{n}=\frac{6-1}{5}=1 \\
x_{i} & =a+i \Delta x=1+i, \text { for each } i \\
f\left(x_{i}^{*}\right) & =f\left(x_{i}\right)=\frac{1}{1+i}, \text { for each } i
\end{aligned}
$$

Therefore, (the answer is intentionally not simplified for students to see the algebra)

$$
\sum_{i=1}^{5} f\left(x_{i}^{*}\right) \Delta x=\sum_{i=1}^{5} \frac{1}{i+1}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}
$$

Example 2 Compute the integral $\int_{0}^{4} x^{3} d x$ by computing Riemann sums for a regular partition.
Solution: Note that $a=0, b=4$ and $f(x)=x^{3}$. Use a regular partition for each positive integer n. Note that when $n \rightarrow \infty,|P| \rightarrow 0$. Compute the following

$$
\begin{aligned}
\Delta x & =\frac{b-a}{n}=\frac{4-0}{n}=\frac{4}{n} . \\
x_{i} & =a+i \Delta x=\frac{4 i}{n}, \text { for each } i . \\
f\left(x_{i}^{*}\right) & =f\left(x_{i}\right)=\left(\frac{4 i}{n}\right)^{3}=64 \frac{i^{3}}{n^{3}}, \text { for each } i .
\end{aligned}
$$

Therefore, the corresponding Riemann sum becomes (note that $\frac{1}{n^{4}}$ is viewed as constant with respect to the index i, and so it can be moved out of the summation sign. The last step follows from summation formulas)

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{i=1}^{n} 64 \frac{i^{3}}{n^{3}} \frac{4}{n}=\frac{256}{n^{4}} \sum_{i=1}^{n} i^{3}=\frac{256}{n^{4}} \frac{n^{2}(n+1)^{2}}{4} .
$$

Thus the answer is

$$
\int_{0}^{4} x^{3} d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 64 \frac{i^{3}}{n^{3}} \frac{4}{n}=\lim _{n \rightarrow \infty} \frac{256}{n^{4}} \frac{n^{2}(n+1)^{2}}{4}=64 .
$$

